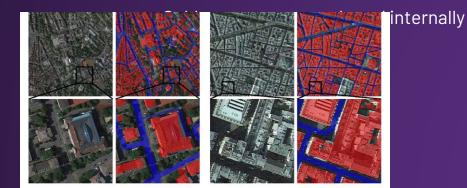
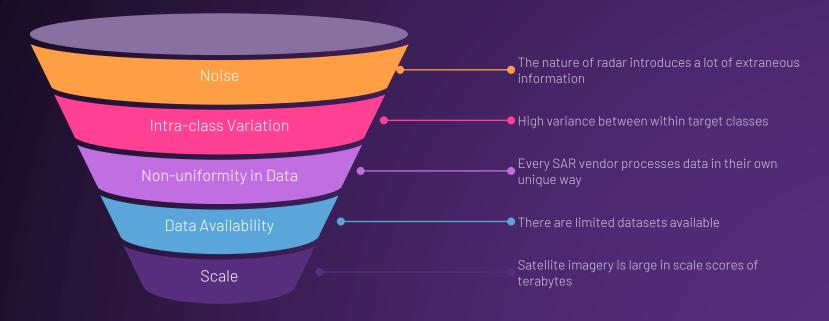
SAR Segmentation

Lens Desrouleaux

The Problem

- Synthetic Aperture Radar satellites allow the military to perform surveillance
- Incoming images are hard for people to interpret
- Labeling images takes a long time and a lot of training
- For hard examples an expert needs to be ringed in to make sense of an image


The Company


- A growing defense startup focused on developing military software and Al
- Main missions are in Cybersecurity and Al
- About ~200 employees

The Solution

- Create automatic SAR labelling software
- Robust and accurate models
- Minimal misclassifications
- Would need to be lightweight

Obstacles to Overcome

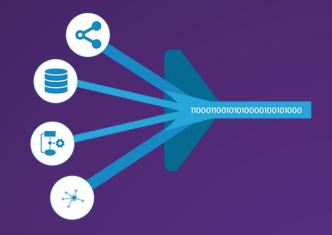
The Team and My Role

- One GIS data engineer to process and analyze data
- One ML Engineer

Model Evaluation	Pipeline Development	Model Improvement
 Evaluated a model architectures 	 Make changes to data pipeline to make data easier to use 	 Research and implement deep learning techniques to improve model performance

Toolset

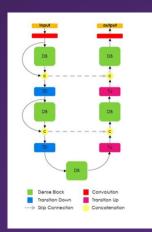
- Python
 - NumPy
 - Tensorflow
 - Albumentations
 - Gdal
 - networkx,lgraph,Cugraph
 - Tifffile
- Docker
- Terraform


Model Evaluation

- Creating a data split for training, testing
- Deciding upon an evaluation criteria
- Testing architectures
- Selecting best performers to be used in later experiments

Pipeline Development

- Utilizing Albumentations library to augment data
- Selecting which augmentations would be useful
- Reduced overfitting and improved performance on test dataset


Transfer Learning

- Researched publicly available aerial datasets
- Selected a Kaggle competition dataset
- Molded the data to fit with our parameters
- Noticeable improvement on convergence times

Model Improvement

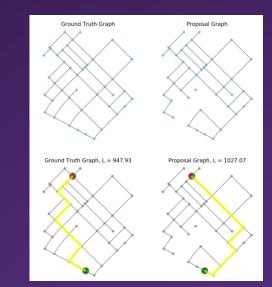
- Architectures
 - Researched and implemented several unique state of the art architectures
 - Tiramisu
 - Dynamic Convolution

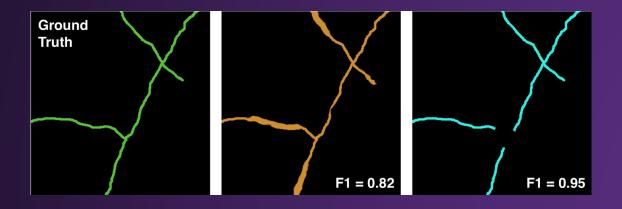
Model Improvement

- Structural Similarity Loss
 - Implemented this unique loss function to improve road segmentation
 - Ultimately used to improve segmentation of buildings

(a) Real-world image

(b) Ground truth

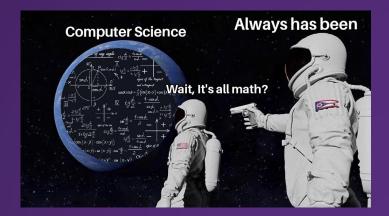




(c) Prediction with cross entropy (d) Prediction with proposed SSL

Model Improvement

- Graph Derived Losses
 - Created several loss functions based on graph connectivity
 - Yielded no positive results


What I Learned

- How to read, understand, and implement research papers
- Data Augmentation
- Data pipeline modification
- Tensorflow
- Terraform

How Salisbury Helped

- Development and presentations in Software Engineering
- Machine learning project in COSC 320
- Machine learning project in COSC 370
- Linear Algebra
- Dr. Anderson

Sources and Questions

- Segmentation Image
- Opening Satellite
- Aerial SAR transition
- Data Pipeline Image
- Graph derived loss images
- Structural Similarity Loss for Semantic Segmentation
- <u>Satellite Gif</u>
- Its all math meme
- <u>Nvidia Tiramisu</u> , <u>Tiramisu Paper</u>